Existence of Chebyshev centers, best $n$-nets and best compact approximants

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on convergence and existence of best proximity points

In this paper, we introduce generalized cyclic φ-contraction maps in metric spaces and give some results of best proximity points of such mappings in the setting of a uniformly convex Banach space. Moreover, we obtain convergence and existence results of proximity points of the mappings on reflexive Banach spaces

متن کامل

Common fixed points and best approximants in nonconvex domain

The aim of the paper is to show the validity of results of Imdad [7] in a domain which is not necessarily starshaped and mappings are not necessarily linear. Our results also improve, extend and generalize various existing known results in the literature.

متن کامل

RAY SEQUENCES OF BEST RATIONAL APPROXIMANTS FOR Ixla

The convergence behavior of best unifonn rational approximations r;'n with numerator degree m and denominator degree n to the function Ixla, a > 0, on [-I, I] is investigated. It is assumed that the indices (m, n) progress along a ray sequence in the lower triangle of the Walsh table, i.e. the sequence of indices {(m, n)} satisfies m --c E [1,00) asm+If-OO. If In addition to the convergence beh...

متن کامل

Existence of best proximity and fixed points in $G_p$-metric spaces

In this paper, we establish some best proximity point theorems using new proximal contractive mappings in asymmetric $G_{p}$-metric spaces. Our motive is to find an optimal approximate solution of a fixed point equation. We provide best proximity points for cyclic contractive mappings in $G_{p}$-metric spaces. As consequences of these results, we deduce fixed point results in $G_{p}$-metric spa...

متن کامل

Variations on the Chebyshev and Lq Theories of Best Approximation

The classical Chebyshev theory of best uniform approximation to continuous functions by polynomials of degree <n was initiated by Chebyshev in [2]. This theory has a distinct advantage over the corresponding ones for L4-norms, 1 < q < co, in that the unique best approximant is characterized by a remarkable geometric property. Let f be a realvalued function, continuous on [0, 11, and, for n = 0,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1982

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1982-0654848-2